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ABSTRACT 

In this work equations are presented to describe solute concentration profiles 
in thermal field-flow fractionation that account for the effect of the temperature 
drop across the solute zone on the thermal and ordinary diffusion coefficients. The 
influence of this effect, together with the effects of the temperature dependence of 
the solvent viscosity and solvent thermal conductivity, on the conversion of reten- 
tion data into thermal diffusion data were studied. The systematic error made 
when the ratio of the thermal and ordinary diffusion coefficient (dT) is assumed 
to be constant can be considerable and is larger for systems with low retention 
(e.g., for low molecular weight or small thermal diffusion). For the two systems 
studied (polystyrene in THF and in ethylbenzene), it was found that the tempera- 
ture dependence of the solvent viscosity is of much greater importance than the 
temperature dependence of the solvent thermal conductivity. When all three pa- 
rameters are considered to be independent of the temperature, the results are still 
quite acceptable. This is due to the fact that the effect of the temperature depen- 
dence of the solvent viscosity is counteracted by the combined effects of the 
temperature dependence of the solvent thermal conductivity and of a/T. 

* To whom correspondence should be addressed. 
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51 4 VAN ASTEN ET AL. 

INTRODUCTION 

Field-flow fractionation (FFF) is a relatively new separation method 
introduced by Giddings in 1966 (1). This technique is especially suited to 
the analysis and characterization of macromolecules. Contrary to chro- 
matographic separation methods, no stationary phase is used in FFF. 
Retention and separation are caused by the action of an external field 
perpendicular to the direction of the laminar flow of a carrier liquid 
through the open channel. Thermal field-flow fractionation (ThFFF) is a 
variety of FFF in which a temperature gradient is used as the field. In 
ThFFF, retention is determined by the ratio of the thermal to the ordinary 
diffusion coefficient. The ratio of these parameters is also expressed as 
a /T ,  where a is the Soret coefficient and T is the temperature. 

The phenomenon of thermal diffusion has been known for over a cen- 
tury. The use of this transport process for the fractionation of macromole- 
cules was first reported by Debye and Bueche (2) in 1948. A number of 
theories, which vary widely in conceptual basis, have been proposed to 
explain the phenomenon of thermal diffusion in liquids and to link the 
Soret coefficient to physical and chemical parameters of the solute and 
solvent. But as was shown by Schimpf and Giddings ( 3 ) ,  none of the 
existing theories is able to accurately describe the effect of thermal diffu- 
sion of polymers in solution. Because of the lack of insight and data, the 
measurement of thermal diffusion coefficients for various polymer/solvent 
systems is necessary to increase the understanding of the thermal diffusion 
process ( 3 ) .  When used in combination with some other technique for the 
determination of diffusion coefficients, ThFFF is an excellent method for 
the measurement of thermal diffusion coefficients of polymers in solution 

However, in ThFFF several complications arise from the fact that a 
number of important physical parameters are temperature-dependent. Be- 
cause of the thermal gradient required in ThFFF, these parameters vary 
across the channel thickness. This makes the theoretical description 
needed for the conversion of retention data into cdT values more complex. 
The effect of the temperature dependence of the viscosity and thermal 
conductivity of the solvent was described by Gunderson et al. (8). But as 
was shown by Brimhall et al. (4) and Chen et al. (9), the Soret coefficient 
itself is also temperature-dependent. Although in ThFFF the solute is 
compressed in a very thin layer at the cold wall, the temperature increment 
across the solute zone can still be large enough to make the consideration 
of the temperature dependence of the Soret coefficient necessary. In the 
most general treatment, the solvent viscosity, the solvent thermal conduc- 
tivity, and the Soret coefficient are all considered to be temperature-de- 

(3-7). 
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THERMAL FIELD-FLOW FRACTIONATION 51 5 

pendent. However, because of the lack of necessary data, it is not always 
possible to account for the temperature dependence of these parameters. 
Therefore, it is interesting to know the magnitude of the systematic error 
when the temperature dependence of one or more of these parameters is 
neglected in the theoretical description of the separation mechanism. 

In this work a numerical fitting method is presented to account for the 
influence of the temperature change across the solute zone on the Soret 
coefficient in ThFFF. Furthermore, the effect of the temperature depen- 
dence of the solvent viscosity, the solvent thermal conductivity, and the 
Soret coefficient on the conversion of retention data into thermal diffusion 
data is studied. 

THEORY 

Temperature Increment across the Solute Zone 

Although it is known that both thermal and ordinary diffusion coeffi- 
cients are temperature-dependent, we found no literature for ThFFF that 
handles this problem. The reason for this is that in most cases the solute 
is compressed in a very thin layer at the cold wall. Therefore, the solute 
molecules are only subjected to a small temperature range. To get an idea 
of the magnitude of this temperature increment, one can calculate the 
temperature increase going from the cold wall to an arbitrarily chosen 
position in the channel. For the sake of simplicity it is assumed that both 
the thermal conductivity and the Soret coefficient are temperature-inde- 
pendent. When the distance from the cold wall is equal to the mean layer 
thickness I ,  the concentration of the solute has decreased by a factor e-'  
(0.37). The corresponding temperature increase is equal to 

AT 
T/ - T, = - 1  = ATA 

W 

where Tr and T, are respectively the temperature at the mean layer thick- 
ness of the solute layer and at the cold wall, AT is the temperature drop 
across the channel thickness w ,  and A is the dimensionless mean layer 
thickness. 

When the expression for A in ThFFF (10) is inserted in Eq. ( l ) ,  the 
following result is obtained: 

Ti - T, = D/DT (2) 
where D is the ordinary diffusion coefficient and DT is the thermal diffu- 
sion coefficient. 

The magnitude of the temperature range across which the solute is dis- 
tributed is independent of the temperature difference across the channel 
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51 6 VAN ASTEN ET AL. 

thickness. For steep temperature gradients the value of 1 will be small 
because the temperature increase per unit distance is large. The only re- 
quirement for significant retention is, of course, that (Tl  - T,) must be 
much smaller than A T .  

The correlation between D and the molecular weight M of a polymer 
is often expressed by the empirical relationship D = A M p b  (lo), where 
A and b are constants. When this relationship is introduced into Eq. (2) 
we obtain 

(3) 
For the polymer/solvent systems studied so far, it has been found that DT 
is virtually independent of the molecular weight of the polymer (3). 

For polystyrene in THF it is known that DT = 1 x lo-' cm*.s-'.K-', 
A = 3.86 x and b = 0.57 (3). It follows that for polystyrene with 
a molecular weight of 20k, the temperature range is still 13.5 K, where 
for polystyrene with a molecular weight of 500k, the temperature range 
is only 2 K. From these results it can be concluded that the temperature 
dependence of the Soret coefficient can be important to consider, espe- 
cially for systems in which retention is relatively small (e.g., low molecular 
weights or small thermal diffusion coefficients). 

Tl - T, = AIDTMb 

Velocity Profile of the Carrier Liquid 

An expression for the shape of the fluid velocity profile in ThFFF has 
been derived by Gunderson et al. (8). This treatment is now briefly repro- 
duced and a few minor corrections made. 

If uniform flow in the longitudinal dimension of an infinite parallel plate 
channel is assumed, the equation of motion is given by 

where x is the coordinate in the direction of the channel thickness, u ( x )  
and q(x) are, respectively, the liquid velocity and viscosity as functions 
of x ,  and A p  is the pressure drop across the channel length L .  

When the viscosity of the solvent is constant, the following well-known 
velocity profile is found: 

where (u)  is the mean fluid velocity. However, it is known that the fluid 
viscosity is strongly temperature-dependent. This temperature depen- 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
1
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



THERMAL FIELD-FLOW FRACTIONATION 51 7 

dence can be accounted for by fitting data for fluidity (i.e., the reciprocal 
of the solvent viscosity) to the following polynomial function (8): 

1 / ~  = uo + u ~ T  + ~ 2 T 2  + a3T3 (6) 
In order to derive the velocity profile, the viscosity as a function of the 

position x in the channel must be known. Therefore, the temperature 
profile across the channel thickness must be determined. If the thermal 
conductivity K of the solvent is considered to be constant, the temperature 
profile is linear. However, this is only correct to a first approximation 
since K is generally temperature-dependent, expressed according to the 
equation 

(7) 

where bo is the thermal conductivity at the cold wall temperature. 
The term b1 (equal to d ~ / d T )  is assumed to be constant over the consid- 

ered temperature range. When Eq. (7) is combined with Fouriers law of 
heat conduction, the following temperature profile is obtained: 

K = bo + bl(T - Tc)  

Substituting Eq. (8) into Eq. (6) would give the desired formula which 
describes the fluid viscosity as a function of the position in the channel. 
Because of the complex nature of Eq. (81, the resulting expression for the 
velocity profile would be very awkward. As was shown by Gunderson et 
al. (8), a simpler approximation of the temperature profile can be found 
by expanding the temperature in a Taylor's series around the cold wall 
temperature: 

From Eq. (8) it follows that 
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where 

VAN ASTEN ET AL. 

Note that Eq. (12) includes the corrected coefficient of 3 rather than 2, 
as given in Ref. 8. When Eq. (9) is substituted into Eq. (6), a polynomial 
relationship in xIw for the solvent fluidity is found. If this polynomial 
function is truncated after four terms, the fluidity as a function of the 
channel position is given by 

- 1 = do + dl (:) + d2 (;I + d3 (ir 
rl 

bi 
b0 

+ a2 - a2-Tc + 3a3Tc - 

The coefficients to the terms in (bl/bo)’ of Eq. (14d) have been corrected. 
The errors in the previously published equation (see Ref. 8) arose from 
the error made in Eq. (12) pointed out above. 

As was shown by Gunderson et al. (8), the use of Eq. (14) led, for 
ethylbenzene as the solvent, to systematic errors of less than 0.25% in 
fluidity in the region 0 5 xIw 5 0.5 for AT = 100 K. Equation (14) can also 
be used when the temperature dependence of the thermal conductivity of 
the solvent is neglected, in which case bl is set equal to zero. 

With the fluid viscosity expressed as a function of the position in the 
channel by Eq. (4), it is possible to derive the following equation for the 
velocity profile: 
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THERMAL FIELD-FLOW FRACTIONATION 51 9 

where 

From this equation the average fluid velocity can easily be found: 

We note that the previously published (8) forms of Eqs. (15) and (16) 
were in error by the omission of w2.  In Fig. 1 it is demonstrated to what 

1.6 

1.4 

1.2 

A 1  

> 0.0 
5 
K 
W + 0.6 

0.4 

02 

0 

XIW 
FIG. 1 Velocity profiles calculated for ethylbenzene for Tc = 293 K and A T  = 100 K. 
Profiles are drawn for the assumption of constant q and K (full line), and for temperature- 

dependent q and K (dashed line). 
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520 VAN ASTEN ET AL. 

extent the velocity profile for ethylbenzene (as an example) is influenced 
by the temperature dependence of the fluid viscosity and thermal conduc- 
tivity. The parameters describing this temperature dependence are given 
in Table 1. From Fig. 1 it can be concluded that the temperature depen- 
dence of the fluid viscosity has a significant influence on the shape of the 
velocity profile. The effect of the temperature dependence of the thermal 
conductivity was found to be relatively insignificant. If the solvent viscos- 
ity is considered to be constant, systematic errors of up to 35% are made 
in the prediction of the fluid velocity near the cold wall. Neglecting the 
temperature dependence of the thermal conductivity leads in this case to 
corresponding systematic errors of less than 1% for ethylbenzene. These 
results are typical of most organic solvents. 

Concentration Profile of the Solute 

The concentration profile in ThFFF can be determined by solving the 
following differential equation: 

1 dc 
c dx 

where c is the concentration as a function of the position in the channel 
and cx is the Soret coefficient. The term cx/T is the ratio of the thermal and 
ordinary diffusion coefficients. If this ratio is considered to be constant, 
the concentration profile is obtained as 

(18) 

where co is the concentration at the cold wall. 
To obtain the concentration as a function of the position within the 

channel, the temperature profile must be known. If the thermal conductiv- 

c(x) = co exp[-(cx/T)(T(x) - T,)] 

TABLE 1 
Empirical Constants Describing the Temperature Dependence of the Viscosity and 

Thermal Conductivity for THF (8, 13) and Ethylbenzene (4, 14) 

Ethylbenzene THF 

a0 2892.923 7622.73 
a1 -35.176 - 88.933 
a2 0.1284 0.3344 
u3 -8.395 x lo- '  -3.259 x 
~ ( 2 9 3  K) (J .m-l . s - ' .K- ' )  0.1321 0. I398 
bl (J.m- I.s - ' .K ~ *) -2.437 x 1 0 - 4  -1.989 x 
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THERMAL FIELD-FLOW FRACTIONATION 521 

ity of the solvent is taken as a constant, the temperature profile is linear, as 
pointed out earlier. However, if the thermal conductivity is temperature- 
dependent, Eq. (8) must be used. The influence of this temperature depen- 
dence on the concentration profile of polystyrene 20k in ethylbenzene is 
demonstrated in Fig. 2. It is clear that the temperature dependence of the 
thermal conductivity has a stronger influence on the concentration profile 
of the solute than on the velocity profile of the solvent. If the thermal 
conductivity of the solvent is considered to be constant, systematic errors 
up to 20% can be made in the prediction of the concentration of the solute. 

However, as was already shown, the ratio of the thermal and ordinary 
diffusion coefficients is also temperature-dependent. This temperature de- 
pendence can be accounted for by using the following empirical rela- 
tionship: 

a/T = eo + e l T  + e2T2 (19) 
The temperature dependence of alT can be determined by measuring the 
retention ratio of the polymer/solvent system at various cold wall tempera- 
tures. For the conversion of this retention data into a/T values, it has 
been assumed in previous work that the temperature drop across the solute 

1 

0.8 

0" o.6 
\ n sc 
W 
0 0.4 

0.2 

0 

FIG. 2 Concentration profiles for polystyrene 20k in ethylbenzene (Tc = 293 K,  A T  = 
loOK,& = 9.5 X 10-8cmZ.s-' .K-',D = 1 .1  X 10-6cm2.s-')calculatedforconstantand 
temperature-dependent K (full and dashed lines, respectively). In each case, alT is assumed 

constant. 
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522 VAN ASTEN ET AL. 

zone can be neglected. Each measurement then corresponds to a constant 
alT value at some fixed system temperature. This fixed temperature has 
been assumed to correspond to the cold wall temperature or, alternatively, 
to the temperature at the center of gravity of the solute zone (4). However, 
this is only correct to a first approximation. When the influence of the 
temperature drop across the solute zone on a/T is taken into account, the 
concentration profile given in Eq. (20) is found. This equation can be 
derived with the use of Eqs. (17) and (19). 

Once again the temperature profile is required to obtain the concentra- 
tion as a function of the position in the channel. If the thermal conductivity 
of the solvent is considered to be constant, the concentration profile is 
given by 

where 

f l  = eo + e lT ,  + e2Tz (2 1 a) 

el 
2 f 2  = - + e2Tc 

f 3  = e2/3 

However, if the temperature dependence of thermal conductivity is con- 

(22) 

sidered, the following concentration profile is found: 

c(x) = co exp(-[flG + f2G2 + f3G31) 

where 
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THERMAL FIELD-FLOW FRACTIONATION 523 

Retention Ratio 

The retention ratio in FFF can generally be expressed as (1 1) 

where ( ) denotes averaging over the cross-section of the channel. This 
equation ultimately links the measured retention ratio to the Soret coeffi- 
cient, from which it is possible to find the thermal diffusion coefficient. To 
obtain a relationship between R and the Soret coefficient, the temperature 
dependence of the solvent viscosity, solvent thermal conductivity, and 
a/Tmust be considered. Only if the temperature dependence of the solvent 
viscosity is ignored, and all other parameters are considered constant, 
does Eq. (23) yield an analytical solution. In this case the following well- 
known equation is found: 

R = 6h[coth(l/2h) - 2h] (24) 

In every other case, numerical integration is necessary. 
If the influence of the temperature drop across the solute zone on d T  

is taken into account, Eq. (20) in combination with Eq. (23) will yield a 
complicated expression for R as a function of the parameters eo, e l ,  e2, 

and the cold wall temperature. For each combination of e-values it is then 
possible to calculate the theoretically expected retention ratio for a given 
cold wall temperature. The estimation of eo, e l ,  and e2 for some polymer/ 
solvent system requires measurement of retention ratios at a minimum of 
three cold wall temperatures. The interpretation of such measurements 
in terms of eo, e l ,  and e2 cannot be performed via explicit expressions. 
It can only be done with the use of a fitting procedure (e.g., simplex 
optimization), finding those e-values for which the difference between 
the calculated and measured retention ratios is minimal. The temperature 
dependence of a/T is thereby described as accurately as possible. For the 
determination of the best-fit temperature dependence of a/T, the following 
scheme was used: 

1. The retention data of polystyrene in ethylbenzene and in THF for 
different cold wall temperatures was taken from Ref. 4 and Ref. 9, 
respectively. 
a/T was first assumed to be independent of T across the solute zone 
thickness in order to obtain initial estimates for a/T values for the 
different cold wall temperatures from the measured retention ratios. 
The temperature at the center of mass of each of the solute zones was 

2. 
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524 VAN ASTEN ET AL. 

calculated (4), and Eq. (19) was used to fit these data. The resultant e- 
values served as starting parameters for the fitting process. 

3. The fitting process was carried out to find the combination of e-values 
for which the temperature dependence of cilT was described as accu- 
rately as possible. 

When some other technique for the determination of the temperature 
dependence of the ordinary diffusion coefficient is used, it is possible to 
determine the temperature dependence of the thermal diffusion coefficient 
from these e-values. 

METHODS AND PROCEDURES 

All computer programs were written in Turbo Pascal 6.0 (Borland Inter- 
national, Scotts Valley, California, USA). For the various numerical inte- 
grations, a simple routine based on Gaussian quadratures was taken (16). 
As a fitting procedure, a modified simplex method was used (12). The 
numerical integration routine was tested by comparing it with a more 
sophisticated, time-consuming integration routine which used a/ variable 
step width. No significant differences were observed. Thk fitting proce- 
dure was tested with the use of artificial data sets containing data points 
which were calculated for a special combination of e-values. Slightly dif- 
ferent e-values were given as starting values. The modified simplex 
method found the original combination of e-values without difficulty. 

To study the importance of the effect of the temperature gradient on 
the solvent viscosity, solvent thermal conductivity, and ci/T, a total of 
eight methods was developed. These methods are coded with three sym- 
bols to indicate which assumptions were made concerning the influence 
of the temperature gradient on the three parameters of interest. When the 
temperature dependence of the viscosity is taken into account, the symbol 
-q is present in the code. For the thermal conductivity, the symbol K is 
included. The symbol ci indicates that the influence of the temperature 
increment across the solute zone on ci/T is considered. If the effect of the 
temperature gradient on one of these parameters is neglected, an asterisk 
is shown. Thus, in method [q~ci] all temperature effects are considered, 
while for method [***I none of the effects are taken into account. 

As was noted earlier, the effect of the temperature gradient on a/T can 
only be determined if the retention ratio is measured at different cold wall 
temperatures. Such measurements have been carried out for polystyrene 
in the organic solvents ethylbenzene (4) and THF (9). An overview of the 
retention data for these two systems is given in Tables 2 and 3. To account 
for the temperature dependence of the solvent viscosity and thermal con- 
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TABLE 2 
Retention Ratio Data for Polystyrene in Ethylbenzene at Different Cold Wall 

Temperatures ( w  = 254 pm, A T  = 40 K) (4) 

M 

Tc (K) 21,000 5 1,000 97,000 160,000 

269 0.761 0.543 0.371 0.286 
210 0.733 0.534 0.380 0.302 
275 0.421 
289 0.800 0.629 0.464 0.350 
303 0.826 0.497 0.385 
308 0.679 
3 10 0.809 0.657 0.493 
333 0.909 0.772 0.630 0.536 
348 0.896 0.815 0.649 0.551 
363 0.871 0.725 0.635 
319 0.887 0.765 
380 0.633 
393 0.886 0.773 0.692 
408 0.819 0.772 
409 0.920 
423 0.934 0.840 
424 0.754 

TABLE 3 
Retention Ratio Data for Polystyrene in THF at Different Cold Wall Temperatures 

( w  = 76 pm, A T  = 30 K) (9) 

M 

Tc (K) 233,000 400,000 575,000 900,000 

29 1 
30 1 
31 I 
32 1 
33 1 
34 1 

0.477 0.434 0.374 0.262 
0.526 0.471 0.380 0.314 
0.577 0.500 0.428 0.339 
0.632 0.550 0.468 0.367 
0.654 0.567 0.485 0.405 
0.680 0.607 0.527 0.420 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
1
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



526 VAN ASTEN ET AL. 

ductivity, certain empirical constants must be known. For THF and ethyl- 
benzene, the values of these constants are given in Table 1 .  

RESULTS AND DISCUSSION 

The results obtained with the most general method [qlca] are given for 
polystyrene in ethylbenzene in Table 4 and for polystyrene in THF in 
Table 5.  For these results, method [TK*] was used to find the starting 
values for the fitting procedure. It must be noted that the polynomial 
functions describing the temperature dependence of d T  are only valid 
within the range of cold wall temperatures of the measurements. For poly- 
styrene in THF, the cold wall temperature ranged from 291 to 341 K, 
while for polystyrene in ethylbenzene this range was from 269 to 424 K. 

The fitting process minimizes the sum of squared differences between 
the calculated and measured retention ratios for the different cold wall 
temperatures. The ratio of this sum of squared differences before and after 
the fitting process is given in the last columns of Tables 4 and 5.  This 
ratio gives an indication of the improvement in the theoretical description 
of the system when the influence of the temperature gradient on a/T is 
taken into account. This ratio is expected to go to unity with increasing 
molecular weight because high M polymers occupy a narrower tempera- 
ture range (see Eq. 3). Except for polystyrene having M = 900k, this 
trend can clearly be seen in Table 5 .  This trend is not shown in Table 4, 
however. Because of the lower molecular weights of the polystyrenes 
used for the measurements in ethylbenzene, it was also expected that the 
ratios given in Table 4 should be larger than the ratios in Table 5. This 
effect also is not apparent. The reason for these discrepancies can be 
found when the data sets given in Tables 2 and 3 are compared. The 

TABLE 4 
Polynomial Coefficients Describing the Temperature Dependence of alT for Polystyrene 

in Ethylbenzene Obtained by Method [ ~ K ' Y ] .  Starting Values for the Fitting Process Were 
Found with the Use of Method [ q K * j .  The SSD Ratio is the Ratio of the Sum of Squared 

Differences (between the measured and calculated retention ratios) of 
Method [ q ~ *  j and [YK'Y] 

~ 

M eo el 
Sum of squared 

e2 differences ratio 

2 1 ,000 0.325 - 9.04 1 e-4 4.206e-7 1.16 
51,000 

0.986 - 4.132e-3 4.541e-6 1.05 
97,000 1.456 -6.078e-3 6.721e-6 1.13 
160,000 2.135 - 9.24 1 e-3 1.058e-5 1 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
1
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



THERMAL FIELD-FLOW FRACTIONATION 527 

TABLE 5 
Polynomial Coefficients Describing the Temperature Dependence of ulT for Polystyrene 

in THF Obtained Using Method “qKa]. Starting Values for the Fitting Process Were 
Found with Method [TK*]. The SSD Ratio Is the Same as in Table 4 

M 
Sum of squared 

e2 differences ratio 

233,000 4.742 -2.556e-2 3.583e-5 1.90 
400,000 2.545 - 1.167e-2 1.438e-5 1.24 
575,000 2.395 - 9.764e-3 I .O57e-5 1.05 
900,000 10.512 - 5.80%-2 8.3 l4e-5 1.17 

data for polystyrene in ethylbenzene consists of more than one series of 
measurements (4). This has led to some inconsistencies in this data set. 
The retention ratios measured at a cold wall temperature of 310 K are 
lower than expected. The data set for polystyrene in THF does not contain 
such obvious discrepancies, and the fitting procedure reduces the sum of 
the square of the residuals in R to a greater extent. 

It is very difficult to translate the standard deviation in the measure- 
ments to a standard deviation of the determination of a/T as a function 
of the temperature. This is due to the fact that only a specific combination 
of the three e-values is of importance. The fitting process can only lead 
to meaningful results if the data sets are relatively precise and free of 
systematic errors. 

The effect of the fitting procedure is demonstrated in Figs. 3 and 4. In 
Fig. 3, a/Ts for polystyrene 233k in THF determined via three methods 
are plotted as functions of temperature. The top line was found using 
method [q~a]. The other two lines correspond to two variants of method 
[q~*], where the constant a/T values were coupled to either the cold wall 
temperature T,  or to the temperature Tcg at the center of gravity of the 
solute zone (for all other results obtained with method [q~*], this latter 
definition was used). The effect of the fitting procedure can clearly be 
noticed, especially for the lower temperatures. Accounting for the effect 
of the temperature gradient on d T  leads to higher WIT values. When a/T 
is considered to be constant across zone thickness, it can better be linked 
to the temperature in the center of gravity of the solute zone than to the 
cold wall temperature. When the cold wall temperature is assumed, even 
lower a/T values are found. 

In Figure 4 the percentage differences of the a/T values before and after 
the optimization are shown for the measurements of polystyrene in THF. 
This figure demonstrates that the effect of the temperature dependence 
of a/T is more important for low molecular weights and low temperatures. 
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M = 

575 kDa 

400 kDa 
900 kDa 
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0.35 
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W 

$ 0.25 
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I I I I I I 

280 300 320 340 

T (K) 
FIG. 3 Results for the determination of alT as a function of temperature for polystyrene 
233k in THF using method [qKa] and method [ q ~ * ]  based on both Tcg and T, as explained 

in the text. 
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0.35 - 

n 
0.3 - 3 

jc 
W 

Figure 5 illustrates the effect of the temperature dependence of the 
solvent viscosity and solvent thermal conductivity on the determination 
of a/T. Polystyrene 233k in THF was taken as an example. Four methods 
were compared for evaluating the effect of the temperature gradient on 
a/T. From this figure it can be seen that the temperature dependence of 
the viscosity is of more importance than the temperature dependence of 
the thermal conductivity. Furthermore, neglecting the temperature depen- 
dence of the viscosity leads to higher a/T values, while neglecting the 
temperature dependence of the thermal conductivity leads to slightly 
lower ollT values. 

To compare all eight methods, the following procedure was carried out. 
The polynomial function for a/T in terms of Tfound with the use of method 
[q~a] was compared with the polynomial functions found when using the 
other seven methods. Method [qrccu] is the most general method; compar- 
ing the other methods with method [q~a] thus gives an indication of the 
systematic error made when some of the parameters are considered to be 
constant. For polystyrene 233k in THF, the results are illustrated in Fig. 
6. In this figure the percentage differences in a/T values between method 
[ ~ K ' Y ]  and the other seven methods are plotted as functions of temperature. 
From this figure it can be concluded that the use of methods [ *K*] ,  [**a], 
and [ * ~ a ]  leads to unacceptable systematic errors in the determination of 

0.2 - 
I I I 1 I I I 

280 300 320 340 

FIG. 5 Results obtained for d T  as a function of temperature for polystyrene 233k in THF 
using methods ["KcY], [**a], [q~a], and [?*(.I. 
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alT. All other methods are worth considering. Neglecting the temperature 
dependence of the thermal conductivity (method [q*a]) leads, in this par- 
ticular sample, to a systematic error of about 2%, which is constant 
throughout the temperature range. If a/T is considered to be constant 
(method [q~*]), a maximum systematic error of about 3% is observed for 
the lower temperatures. For higher temperatures the magnitude of the 
systematic error decreases; this can also be seen in Fig. 3 .  For method 
[q**] (where only the solvent viscosity is considered to be temperature- 
dependent), the same trend is observed as for method [q~*]. The only 
difference is that in this case the systematic error is somewhat larger (a 
maximum of about 5%). Neglecting the effect of the temperature gradient 
on all three parameters (method [***I) leads to surprisingly good results. 
For this method a systematic error of about 4% is made, which is constant 
throughout the considered temperature range. The reason for this is clear 
from the results obtained using the other methods. As was shown in Fig. 
3 ,  neglecting the effect of the temperature gradient on a/Tleads to slightly 
lower alT values. The same can be said when the solvent thermal conduc- 
tivity is considered to be constant (see Fig. 5) .  However, omitting the 
temperature dependence of the solvent viscosity leads to considerably 
higher alTvalues. When the effect of the temperature gradient on all three 
parameters is neglected, the two smaller effects (temperature dependence 
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of thermal conductivity and of a/T) partly counteract the large effect of 
the temperature dependence of the solvent viscosity. 

From these results it can be concluded that the temperature dependence 
of the solvent viscosity is important to consider. Although the effects of 
the temperature gradient on the thermal conductivity and a/T are of only 
minor importance, they both counteract the effect of the temperature de- 
pendence of the solvent viscosity. Therefore, the results obtained with 
method [***I are still quite acceptable. This can be an important consider- 
ation when thermal diffusion measurements are carried out in complicated 
systems, such as mixed organic solvents (15), for which no data are avail- 
able on the temperature dependence of the thermal conductivity and vis- 
cosity. 

CONCLUSIONS 

With the use of a modified simplex optimization and a numerical integra- 
tion routine, it is possible to account for the influence of the temperature 
drop across the solute zone on a/T. 

The systematic error that is made when a/T is considered to be constant 
is larger for systems in which retention is low (e.g., for low molecular 
weights or small thermal diffusion coefficients). The magnitude of the 
systematic error can be large enough to make the consideration of the 
effect of the temperature gradient on a/T necessary (even for polystyrene 
233k in THF a maximum error of 3% was found). 

The temperature dependence of the solvent viscosity is of much more 
importance than the temperature dependence of the thermal conductivity. 
Neglecting the temperature dependence of the viscosity leads for polysty- 
rene 233k in THF to a systematic error of about 8% in the determination 
of a/T. If the temperature dependence of the solvent thermal conductivity 
is neglected, this alone leads to a systematic error in a/T of about 2-3% 
for the same system. 

For the data sets studied, the effect of the temperature dependence of 
the viscosity is counteracted by the effect of the temperature gradient on 
the thermal conductivity and a/T. This means that when all three param- 
eters are considered constant, the determination of a/T remains quite ac- 
ceptable (a systematic error of about 4% was found for polystyrene 233k 
in THF). 

SYMBOLS 

a Soret coefficient 
C concentration (mo1.L- ') 
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co 
AP 
AT 
D 
DT 
rl 

K C  

A 
1 
L 
M 
R 
T 
Tc 
Ti 

(v> 

K 

V 

W 
X 

concentration at the cold wall (mo1.L-') 
pressure drop across channel length (Pa) 
temperature difference across channel thickness (K) 
diffusion coefficient (m2.s- ') 
thermal diffusion coefficient (m2.s- ' .K- I )  

solvent viscosity (Pa-s) 
solvent thermal conductivity (J.m-'.s-'.K- ') 
solvent thermal conductivity at the cold wall (J.m- ' -s- I .K- ') 
dimensionless characteristic height of the solute layer 
characteristic height of the solute layer (m) 
channel length (m) 
molecular weight (Da) 
retention ratio 
temperature (K) 
temperature at the cold wall (K) 
temperature at the characteristic height of the solute layer (K) 
linear fluid velocity (m-s-') 
mean linear fluid velocity (m-s-') 
channel thickness (m) 
coordinate in the direction of the channel thickness (m) 
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