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ABSTRACT

In this work equations are presented to describe solute concentration profiles
in thermal field-flow fractionation that account for the effect of the temperature
drop across the solute zone on the thermal and ordinary diffusion coefficients. The
influence of this effect, together with the effects of the temperature dependence of
the solvent viscosity and solvent thermal conductivity, on the conversion of reten-
tion data into thermal diffusion data were studied. The systematic error made
when the ratio of the thermal and ordinary diffusion coefficient (o/T) is assumed
to be constant can be considerable and is larger for systems with low retention
(e.g., for low molecular weight or small thermal diffusion). For the two systems
studied (polystyrene in THF and in ethylbenzene), it was found that the tempera-
ture dependence of the solvent viscosity is of much greater importance than the
temperature dependence of the solvent thermal conductivity. When all three pa-
rameters are considered to be independent of the temperature, the results are still
quite acceptable. This is due to the fact that the effect of the temperature depen-
dence of the solvent viscosity is counteracted by the combined effects of the
temperature dependence of the solvent thermal conductivity and of o/T.

* To whom correspondence should be addressed.
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INTRODUCTION

Field-flow fractionation (FFF) is a relatively new separation method
introduced by Giddings in 1966 (1). This technique is especially suited to
the analysis and characterization of macromolecules. Contrary to chro-
matographic separation methods, no stationary phase is used in FFF.
Retention and separation are caused by the action of an external field
perpendicular to the direction of the laminar flow of a carrier liquid
through the open channel. Thermal field-flow fractionation (ThFFF) is a
variety of FFF in which a temperature gradient is used as the field. In
ThFFF, retention is determined by the ratio of the thermal to the ordinary
diffusion coefficient. The ratio of these parameters is also expressed as
o/T, where « is the Soret coefficient and T is the temperature.

The phenomenon of thermal diffusion has been known for over a cen-
tury. The use of this transport process for the fractionation of macromole-
cules was first reported by Debye and Bueche (2) in 1948. A number of
theories, which vary widely in conceptual basis, have been proposed to
explain the phenomenon of thermal diffusion in liquids and to link the
Soret coefficient to physical and chemical parameters of the solute and
solvent. But as was shown by Schimpf and Giddings (3), none of the
existing theories is able to accurately describe the effect of thermal diffu-
sion of polymers in solution. Because of the lack of insight and data, the
measurement of thermal diffusion coefficients for various polymer/solvent
systems is necessary to increase the understanding of the thermal diffusion
process (3). When used in combination with some other technique for the
determination of diffusion coefficients, ThFFF is an excellent method for
the measurement of thermal diffusion coefficients of polymers in solution
(3-7).

However, in ThFFF several complications arise from the fact that a
number of important physical parameters are temperature-dependent. Be-
cause of the thermal gradient required in ThFFF, these parameters vary
across the channel thickness. This makes the theoretical description
needed for the conversion of retention data into «/T values more complex.
The effect of the temperature dependence of the viscosity and thermai
conductivity of the solvent was described by Gunderson et al. (8). But as
was shown by Brimhall et al. (4) and Chen et al. (9), the Soret coefficient
itself is also temperature-dependent. Although in ThFFF the solute is
compressed in a very thin layer at the cold wall, the temperature increment
across the solute zone can still be large enough to make the consideration
of the temperature dependence of the Soret coefficient necessary. In the
most general treatment, the solvent viscosity, the solvent thermal conduc-
tivity, and the Soret coefficient are all considered to be temperature-de-
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pendent. However, because of the lack of necessary data, it is not always
possible to account for the temperature dependence of these parameters.
Therefore, it is interesting to know the magnitude of the systematic error
when the temperature dependence of one or more of these parameters is
neglected in the theoretical description of the separation mechanism.

In this work a numerical fitting method is presented to account for the
influence of the temperature change across the solute zone on the Soret
coefficient in ThFFF. Furthermore, the effect of the temperature depen-
dence of the solvent viscosity, the solvent thermal conductivity, and the
Soret coefficient on the conversion of retention data into thermal diffusion
data is studied.

THEORY
Temperature Increment across the Solute Zone

Although it is known that both thermal and ordinary diffusion coeffi-
cients are temperature-dependent, we found no literature for ThFFF that
handles this problem. The reason for this is that in most cases the solute
is compressed in a very thin layer at the cold wall. Therefore, the solute
molecules are only subjected to a small temperature range. To get an idea
of the magnitude of this temperature increment, one can calculate the
temperature increase going from the cold wall to an arbitrarily chosen
position in the channel. For the sake of simplicity it is assumed that both
the thermal conductivity and the Soret coefficient are temperature-inde-
pendent. When the distance from the cold wall is equal to the mean layer
thickness [, the concentration of the solute has decreased by a factore ™!
(0.37). The corresponding temperature increase is equal to

T,—Tczé}l:ux (1)

where T, and T are respectively the temperature at the mean layer thick-
ness of the solute layer and at the cold wall, AT is the temperature drop
across the channel thickness w, and \ is the dimensionless mean layer
thickness.

When the expression for A in ThFFF (10) is inserted in Eq. (1), the
following result is obtained:

T, - T. = DIDy )

where D is the ordinary diffusion coefficient and Dy is the thermal diffu-
sion coefficient.

The magnitude of the temperature range across which the solute is dis-
tributed is independent of the temperature difference across the channel
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thickness. For steep temperature gradients the value of / will be small
because the temperature increase per unit distance is large. The only re-
quirement for significant retention is, of course, that (7, — T.) must be
much smaller than AT.

The correlation between D and the molecular weight M of a polymer
is often expressed by the empirical relationship D = AM~? (10), where
A and b are constants. When this relationship is introduced into Eq. (2)
we obtain

T, — T. = AID:M?* (3)

For the polymer/solvent systems studied so far, it has been found that Dy
is virtually independent of the molecular weight of the polymer (3).

For polystyrene in THF it is known that Dy = 1 x 1077 cm?-s~ K~ !,
A =3.86 x 1074, and b = 0.57 (3). It follows that for polystyrene with
a molecular weight of 20k, the temperature range is still 13.5 K, where
for polystyrene with a molecular weight of 500k, the temperature range
is only 2 K. From these results it can be concluded that the temperature
dependence of the Soret coefficient can be important to consider, espe-
cially for systems in which retention is relatively small (e.g., low molecular
weights or small thermal diffusion coefficients).

Velocity Profile of the Carrier Liquid

An expression for the shape of the fluid velocity profile in ThFFF has
been derived by Gunderson et al. (8). This treatment is now briefly repro-
duced and a few minor corrections made.

If uniform flow in the longitudinal dimension of an infinite parallel plate
channel is assumed, the equation of motion is given by

d d A
o[ 2| - -2 @

where x is the coordinate in the direction of the channel thickness, v(x)
and m(x) are, respectively, the liquid velocity and viscosity as functions
of x, and Ap is the pressure drop across the channel length L.

When the viscosity of the solvent is constant, the following well-known
velocity profile is found:

o)

where (v) is the mean fluid velocity. However, it is known that the fluid
viscosity is strongly temperature-dependent. This temperature depen-
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dence can be accounted for by fitting data for fluidity (i.e., the reciprocal
of the solvent viscosity) to the following polynomial function (8):

Im=ay+ aT + axT? + asT? (6)

In order to derive the velocity profile, the viscosity as a function of the
position x in the channel must be known. Therefore, the temperature
profile across the channel thickness must be determined. If the thermal
conductivity k of the solvent is considered to be constant, the temperature
profile is linear. However, this is only correct to a first approximation
since k is generally temperature-dependent, expressed according to the
equation

kK = by + by(T — T) )]

where b, is the thermal conductivity at the cold wall temperature.

The term b, (equal to dx/dT) is assumed to be constant over the consid-
ered temperature range. When Eq. (7) is combined with Fouriers law of
heat conduction, the following temperature profile is obtained:

z_xél X bl2 21/2
—-1+|:1+wb0AT+;v‘<b—o) (AT)
bi/bo ®

Substituting Eq. (8) into Eq. (6) would give the desired formula which
describes the fluid viscosity as a function of the position in the channel.
Because of the complex nature of Eq. (8), the resulting expression for the
velocity profile would be very awkward. As was shown by Gunderson et
al. (8), a simpler approximation of the temperature profile can be found
by expanding the temperature in a Taylor’s series around the cold wall
temperature:

d x? {d? x3(d3
T(x) = T. + x(z:g)c + E"'(H—x‘z—)c + y(zé)c + e 9)

From Eq. (8) it follows that

d S
d? SV b
()= ()% an
&3 SY /b,
=) =3 @ (12

Tx) =T, +
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where

by (ATY?
by 2

Note that Eq. (12) includes the corrected coefficient of 3 rather than 2,
as given in Ref. 8. When Eq. (9) is substituted into Eq. (6), a polynomial
relationship in x/w for the solvent fluidity is found. If this polynomial
function is truncated after four terms, the fluidity as a function of the
channel position is given by

S =AT + (13)

% =do + dy (%) + dy (%)2 + ds (%)3 (14)

where
do = ap + a1T. + axT?2 + asT? (14a)
d\ = (a1 + 2a;T. + 3asT3)S (14b)

_{_1 b _. b _3 bl
dz—[ 2a1b0+a2 a2b0T°+3a3T° 2a3b0T§]S (14¢)

M1 (Y b, b\’
d3 = [-z—al (i)‘(}') - azi)'; + a; (b_o Tc
by 3

2
+ az — 3azb_0Tc + 2@ (Z—:)) T%]S3

(14d)

The coefficients to the terms in (b1/bo)? of Eq. (14d) have been corrected.
The errors in the previously published equation (see Ref. 8) arose from
the error made in Eq. (12) pointed out above.

As was shown by Gunderson et al. (8), the use of Eq. (14) led, for
ethylbenzene as the solvent, to systematic errors of less than 0.25% in
fluidity in the region 0 < x/w = 0.5 for AT = 100 K. Equation (14) can also
be used when the temperature dependence of the thermal conductivity of
the solvent is neglected, in which case b, is set equal to zero.

With the fluid viscosity expressed as a function of the position in the
channel by Eq. (4), it is possible to derive the following equation for the
velocity profile:

2 3 4 5
S EC AT RC R

(15)
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where
hy = 0do (15a)
hy = (do + 0d1)/2 (15b)
hs = (di + 6d2)/3 (15¢)
hy = (d2 + 0d3)/4 (15d)
hs = ds/5 (15¢)

_ | d 4 s di dr  ds
e——[2+3+4+5]/[d0+2+?+7] (150)

From this equation the average fluid velocity can easily be found:

_ ~pr2 h hz h3 h4 hs
(‘U)— 13 |:2+?+I+'5—+'€:' (16)

We note that the previously published (8) forms of Egs. (15) and (16)
were in error by the omission of w?. In Fig. 1 it is demonstrated to what

1.6

1.47

1.2

v(x)/<v>

o
b
1

(=]

0 0.2 04 0.6 0.8 1
xX/w

FIG. 1 Velocity profiles calculated for ethylbenzene for 7, = 293 K and AT = 100 K.
Profiles are drawn for the assumption of constant n and « (full line), and for temperature-
dependent m and k (dashed line).
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extent the velocity profile for ethylbenzene (as an example) is influenced
by the temperature dependence of the fluid viscosity and thermal conduc-
tivity. The parameters describing this temperature dependence are given
in Table 1. From Fig. 1 it can be concluded that the temperature depen-
dence of the fluid viscosity has a significant influence on the shape of the
velocity profile. The effect of the temperature dependence of the thermal
conductivity was found to be relatively insignificant. If the solvent viscos-
ity is considered to be constant, systematic errors of up to 35% are made
in the prediction of the fluid velocity near the cold wall. Neglecting the
temperature dependence of the thermal conductivity leads in this case to
corresponding systematic errors of less than 1% for ethylbenzene. These
results are typical of most organic solvents.

Concentration Profile of the Solute

The concentration profile in ThFFF can be determined by solving the
following differential equation:

cdx

1dc a\ dT

- (T) I an
where c¢ is the concentration as a function of the position in the channel
and a is the Soret coefficient. The term o/T is the ratio of the thermal and
ordinary diffusion coefficients. If this ratio is considered to be constant,

the concentration profile is obtained as
c(x) = co expl—(/THT(x) — Tc)] (18)

where ¢y is the concentration at the cold wall.
To obtain the concentration as a function of the position within the
channel, the temperature profile must be known. If the thermal conductiv-

TABLE 1
Empirical Constants Describing the Temperature Dependence of the Viscosity and
Thermal Conductivity for THF (8, 13) and Ethylbenzene (4, 14)

Ethyibenzene THF
ag 2892.923 7622.73
a; —35.176 —88.933
a 0.1284 0.3344
as ~8.395 x 1075 —-3.259 x 107¢
(293 K) J-rm~'s™ K™ 0.1321 0.1398

b (Im s LK% —2.437 x 1074 —1.989 x 107+
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ity of the solvent is taken as a constant, the temperature profile is linear, as
pointed out earlier. However, if the thermal conductivity is temperature-
dependent, Eq. (8) must be used. The influence of this temperature depen-
dence on the concentration profile of polystyrene 20k in ethylbenzene is
demonstrated in Fig. 2. It is clear that the temperature dependence of the
thermal conductivity has a stronger influence on the concentration profile
of the solute than on the velocity profile of the solvent. If the thermal
conductivity of the solvent is considered to be constant, systematic errors
up to 20% can be made in the prediction of the concentration of the solute.
However, as was already shown, the ratio of the thermal and ordinary
diffusion coefficients is also temperature-dependent. This temperature de-
pendence can be accounted for by using the following empirical rela-
tionship:
(I/T = e9 + elT + €2T2 (19)
The temperature dependence of o/T can be determined by measuring the
retention ratio of the polymer/solvent system at various cold wall tempera-

tures. For the conversion of this retention data into o/T values, it has
been assumed in previous work that the temperature drop across the solute

T
0 0.02 0.04 0.06 0.08

FIG. 2 Concentration profiles for polystyrene 20k in ethylbenzene (7. = 293 K, AT =

100K,Dr =9.5 x 10 8cm?-s~ " K~', D = 1.1 x 10~ %cm?-s !) calculated for constant and

temperature-dependent k (full and dashed lines, respectively). In each case, a/T is assumed
constant.
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zone can be neglected. Each measurement then corresponds to a constant
o/T value at some fixed system temperature. This fixed temperature has
been assumed to correspond to the cold wall temperature or, alternatively,
to the temperature at the center of gravity of the solute zone (4). However,
this is only correct to a first approximation. When the influence of the
temperature drop across the solute zone on o/7 is taken into account, the
concentration profile given in Eq. (20) is found. This equation can be
derived with the use of Egs. (17) and (19).

c(x) = co CXp(~ [eo(T(x) - T) + %(T()c)2 T2) + *(T(r)3 )D
(20)

Once again the temperature profile is required to obtain the concentra-
tion as a function of the position in the channel. If the thermal conductivity
of the solvent is considered to be constant, the concentration profile is
given by

c(x) = co exp (- [flAT(%) + f2(ATY (ﬁ) b (AT (;ﬁ‘) D

20
where
fi=e + eT. + exT? (21a)
f2= 5 + el (21b)
f3 = ex/3 21c)

However, if the temperature dependence of thermal conductivity is con-
sidered, the following concentration profile is found:

c(x) = coexp(—[f1G + f2G* + f3G3)) (22)

where

2 12
—1+[1+2—x%AT (‘) (AT)Z]
0 0

G = b1 (22a)
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Retention Ratio

The retention ratio in FFF can generally be expressed as (11)

_ fon)
(cXw)

where ( ) denotes averaging over the cross-section of the channel. This
equation ultimately links the measured retention ratio to the Soret coeffi-
cient, from which it is possible to find the thermal diffusion coefficient. To
obtain a relationship between R and the Soret coefficient, the temperature
dependence of the solvent viscosity, solvent thermal conductivity, and
o/T must be considered. Only if the temperature dependence of the solvent
viscosity is ignored, and all other parameters are considered constant,
does Eq. (23) yield an analytical solution. In this case the following well-
known equation is found:

R (23)

R = 6\[coth(1/2\) — 2A] (24)

In every other case, numerical integration is necessary.

If the influence of the temperature drop across the solute zone on o/T
is taken into account, Eq. (20) in combination with Eq. (23) will yield a
complicated expression for R as a function of the parameters ¢y, e;, e,
and the cold wall temperature. For each combination of e-values it is then
possible to calculate the theoretically expected retention ratio for a given
cold wall temperature. The estimation of eg, €1, and e, for some polymer/
solvent system requires measurement of retention ratios at a minimum of
three cold wall temperatures. The interpretation of such measurements
in terms of ey, €5, and e, cannot be performed via explicit expressions.
It can only be done with the use of a fitting procedure (e.g., simplex
optimization), finding those e-values for which the difference between
the calculated and measured retention ratios is minimal. The temperature
dependence of o/T is thereby described as accurately as possible. For the
determination of the best-fit temperature dependence of «/T, the following
scheme was used:

1. The retention data of polystyrene in ethylbenzene and in THF for
different cold wall temperatures was taken from Ref. 4 and Ref. 9,
respectively.

2. /T was first assumed to be independent of T across the solute zone
thickness in order to obtain initial estimates for a/T values for the
different cold wall temperatures from the measured retention ratios.
The temperature at the center of mass of each of the solute zones was



12:17 25 January 2011

Downl oaded At:

524 vaN ASTEN ET AL.

calculated (4), and Eq. (19) was used to fit these data. The resultant e-
values served as starting parameters for the fitting process.

3. Thefitting process was carried out to find the combination of e-values
for which the temperature dependence of o/T was described as accu-
rately as possible.

When some other technique for the determination of the temperature
dependence of the ordinary diffusion coefficient is used, it is possible to
determine the temperature dependence of the thermal diffusion coefficient
from these e-values.

METHODS AND PROCEDURES

All computer programs were written in Turbo Pascal 6.0 (Boriand Inter-
national, Scotts Valley, California, USA). For the various numerical inte-
grations, a simple routine based on Gaussian quadratures was taken (16).
As a fitting procedure, a modified simplex method was used (12). The
numerical integration routine was tested by comparing it with a more
sophisticated, time-consuming integration routine which used a variable
step width. No significant differences were observed. The fitting proce-
dure was tested with the use of artificial data sets containing data points
which were calculated for a special combination of e-values. Slightly dif-
ferent e-values were given as starting values. The modified simplex
method found the original combination of e-values without difficulty.

To study the importance of the effect of the temperature gradient on
the solvent viscosity, solvent thermal conductivity, and «/7, a total of
eight methods was developed. These methods are coded with three sym-
bols to indicate which assumptions were made concerning the influence
of the temperature gradient on the three parameters of interest. When the
temperature dependence of the viscosity is taken into account, the symbol
7 is present in the code. For the thermal conductivity, the symbol k is
included. The symbol « indicates that the influence of the temperature
increment across the solute zone on «/T is considered. If the effect of the
temperature gradient on one of these parameters is neglected, an asterisk
is shown. Thus, in method [nka] all temperature effects are considered,
while for method [***] none of the effects are taken into account.

As was noted earlier, the effect of the temperature gradient on o/T can
only be determined if the retention ratio is measured at different cold wall
temperatures. Such measurements have been carried out for polystyrene
in the organic solvents ethylbenzene (4) and THF (9). An overview of the
retention data for these two systems is given in Tables 2 and 3. To account
for the temperature dependence of the solvent viscosity and thermal con-
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TABLE 2
Retention Ratio Data for Polystyrene in Ethylbenzene at Different Cold Wall
Temperatures {(w = 254 pm, AT = 40 K) (4)

M

T. (K) 21,000 51,000 97,000 160,000
269 0.761 0.543 0.371 0.286
270 0.733 0.534 0.380 0.302
275 0.421
289 0.800 0.629 0.464 0.350
303 0.826 0.497 0.385
308 0.679
310 0.809 0.657 0.493
333 0.909 0.772 0.630 0.536
348 0.896 0.815 0.649 0.551
363 0.871 0.725 0.635
379 0.887 0.765
380 0.633
393 0.886 0.773 0.692
408 0.819 0.772
409 0.920
423 0.934 0.840
424 0.754

TABLE 3

Retention Ratio Data for Polystyrene in THF at Different Cold Wall Temperatures
(w =76 pum, AT = 30 K) (9)

M
T. (K) 233,000 400,000 575,000 900,000
291 0.477 0.434 0.374 0.262
301 0.526 0.471 0.380 0.314
31 0.577 0.500 0.428 0.339
321 0.632 0.550 0.468 0.367
331 0.654 0.567 0.485 0.405

341 0.680 0.607 0.527 0.420
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ductivity, certain empirical constants must be known. For THF and ethyl-
benzene, the values of these constants are given in Table 1.

RESULTS AND DISCUSSION

The results obtained with the most general method [nka] are given for
polystyrene in ethylbenzene in Table 4 and for polystyrene in THF in
Table 5. For these results, method [nk*] was used to find the starting
values for the fitting procedure. It must be noted that the polynomial
functions describing the temperature dependence of «/T are only valid
within the range of cold wall temperatures of the measurements. For poly-
styrene in THF, the cold wall temperature ranged from 291 to 341 K,
while for polystyrene in ethylbenzene this range was from 269 to 424 K.

The fitting process minimizes the sum of squared differences between
the calculated and measured retention ratios for the different cold wall
temperatures. The ratio of this sum of squared differences before and after
the fitting process is given in the last columns of Tables 4 and 5. This
ratio gives an indication of the improvement in the theoretical description
of the system when the influence of the temperature gradient on o/T is
taken into account. This ratio is expected to go to unity with increasing
molecular weight because high M polymers occupy a narrower tempera-
ture range (see Eq. 3). Except for polystyrene having M = 900k, this
trend can clearly be seen in Table 5. This trend is not shown in Table 4,
however. Because of the lower molecular weights of the polystyrenes
used for the measurements in ethylbenzene, it was also expected that the
ratios given in Table 4 should be larger than the ratios in Table S. This
effect also is not apparent. The reason for these discrepancies can be
found when the data sets given in Tables 2 and 3 are compared. The

TABLE 4
Polynomial Coefficients Describing the Temperature Dependence of o/T for Polystyrene
in Ethylbenzene Obtained by Method [nka]. Starting Values for the Fitting Process Were
Found with the Use of Method [nx*]. The SSD Ratio is the Ratio of the Sum of Squared
Differences (between the measured and calculated retention ratios) of
Method [nk*] and [nka]

Sum of squared

M € e e differences ratio
21,000 0.325 —9.041e-4 4.206e-7 1.16
51,000

0.986 —4.132¢-3 4.541e-6 1.05
97,000 1.456 —6.078¢-3 6.721¢-6 1.13

160,000 2.135 —9.241e-3 1.058e-5 1
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TABLE §
Polynomial Coefficients Describing the Temperature Dependence of o/T for Polystyrene
in THF Obtained Using Method [nka]. Starting Values for the Fitting Process Were
Found with Method [nk*]. The SSD Ratio Is the Same as in Table 4

Sum of squared

M eo e, ez differences ratio
233,000 4.742 —2.556¢-2 3.583¢-5 1.90
400,000 2.545 —1.167¢-2 1.438¢-5 1.24
575,000 2.395 —9.764¢-3 1.057e-5 1.05
900,000 10.512 —5.805¢-2 8.314¢-5 i.17

data for polystyrene in ethylbenzene consists of more than one series of
measurements (4). This has led to some inconsistencies in this data set.
The retention ratios measured at a cold wall temperature of 310 K are
lower than expected. The data set for polystyrene in THF does not contain
such obvious discrepancies, and the fitting procedure reduces the sum of
the square of the residuals in R to a greater extent.

It is very difficult to translate the standard deviation in the measure-
ments to a standard deviation of the determination of «/T as a function
of the temperature. This is due to the fact that only a specific combination
of the three e-values is of importance. The fitting process can only lead
to meaningful results if the data sets are relatively precise and free of
systematic errors.

The effect of the fitting procedure is demonstrated in Figs. 3 and 4. In
Fig. 3, o/Ts for polystyrene 233k in THF determined via three methods
are plotted as functions of temperature. The top line was found using
method [mka]. The other two lines correspond to two variants of method
[nx*], where the constant o/T values were coupled to either the cold wall
temperature T, or to the temperature 7., at the center of gravity of the
solute zone (for all other results obtained with method [nk*], this latter
definition was used). The effect of the fitting procedure can clearly be
noticed, especially for the lower temperatures. Accounting for the effect
of the temperature gradient on o/T leads to higher o/T values. When o/T
is considered to be constant across zone thickness, it can better be linked
to the temperature in the center of gravity of the solute zone than to the
cold wall temperature. When the cold wall temperature is assumed, even
lower o/T values are found.

In Figure 4 the percentage differences of the a/T values before and after
the optimization are shown for the measurements of polystyrene in THF.
This figure demonstrates that the effect of the temperature dependence
of /T is more important for low molecular weights and low temperatures.
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FIG. 3 Results for the determination of o/T as a function of temperature for polystyrene
233k in THF using method [mka] and method [nk*] based on both T, and T, as explained
in the text.

0.5 1
0
054 M=
ST
< 400 kDa
1.5 4 900 kDa
2 -
25 233 kDa
3 .
280

T K)

FIG.4 Percentage differences between o/T values obtained with method [nx*] and method
[nka] for polystyrene in THF for M = 233k, 400k, 575k, and 900k, as labeled.
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Figure 5 illustrates the effect of the temperature dependence of the
solvent viscosity and solvent thermal conductivity on the determination
of a/T. Polystyrene 233k in THF was taken as an example. Four methods
were compared for evaluating the effect of the temperature gradient on
o/T. From this figure it can be seen that the temperature dependence of
the viscosity is of more importance than the temperature dependence of
the thermal conductivity. Furthermore, neglecting the temperature depen-
dence of the viscosity leads to higher o/T values, while neglecting the
temperature dependence of the thermal conductivity leads to slightly
lower /T values.

To compare all eight methods, the following procedure was carried out.
The polynomial function for o/T in terms of 7 found with the use of method
{nka] was compared with the polynomial functions found when using the
other seven methods. Method [nka] is the most general method; compar-
ing the other methods with method [nka] thus gives an indication of the
systematic error made when some of the parameters are considered to be
constant. For polystyrene 233k in THF, the results are illustrated in Fig.
6. In this figure the percentage differences in o/T values between method
{nka] and the other seven methods are plotted as functions of temperature.
From this figure it can be concluded that the use of methods [*k*], [ **al],
and [*ka] leads to unacceptable systematic errors in the determination of

[**al N\ [*se]
0.35 [xa]
[n*a]
~
M
N’
% 0.25
0.2 -
L T L) T T L
280 300 320 340

T (K)

FIG.S Results obtained for a/T as a function of temperature for polystyrene 233k in THF
using methods {*kal, [**al, [nxel, and [nv*al.
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2 [2**]
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-4
280 ' 300 ' 320 ' 340
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FIG. 6 Percentage differences between /T values obtained via the most general method
[nka] and the other methods for polystyrene 233k in THF.

o/T. Ali other methods are worth considering. Neglecting the temperature
dependence of the thermal conductivity (method [n*a]) leads, in this par-
ticular sample, to a systematic error of about 2%, which is constant
throughout the temperature range. If o/7 is considered to be constant
(method [nx*1), a maximum systematic error of about 3% is observed for
the lower temperatures. For higher temperatures the magnitude of the
systematic error decreases; this can also be seen in Fig. 3. For method
[n**] (where only the solvent viscosity is considered to be temperature-
dependent), the same trend is observed as for method [nmk*]. The only
difference is that in this case the systematic error is somewhat larger (a
maximum of about 5%). Neglecting the effect of the temperature gradient
on all three parameters (method [***]) leads to surprisingly good results.
For this method a systematic error of about 4% is made, which is constant
throughout the considered temperature range. The reason for this is clear
from the results obtained using the other methods. As was shown in Fig.
3, neglecting the effect of the temperature gradient on o/T leads to slightly
lower o/T values. The same can be said when the solvent thermal conduc-
tivity is considered to be constant (see Fig. 5). However, omitting the
temperature dependence of the solvent viscosity leads to considerably
higher o/ T values. When the effect of the temperature gradient on all three
parameters is neglected, the two smaller effects (temperature dependence
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of thermal conductivity and of a/T) partly counteract the large effect of
the temperature dependence of the solvent viscosity.

From these results it can be concluded that the temperature dependence
of the solvent viscosity is important to consider. Although the effects of
the temperature gradient on the thermal conductivity and o/T are of only
minor importance, they both counteract the effect of the temperature de-
pendence of the solvent viscosity. Therefore, the results obtained with
method [***] are still quite acceptable. This can be an important consider-
ation when thermal diffusion measurements are carried out in complicated
systems, such as mixed organic solvents (15), for which no data are avail-
able on the temperature dependence of the thermal conductivity and vis-
cosity.

CONCLUSIONS

With the use of a modified simplex optimization and a numerical integra-
tion routine, it is possible to account for the influence of the temperature
drop across the solute zone on o/T.

The systematic error that is made when o/T is considered to be constant
is larger for systems in which retention is low (e.g., for low molecular
weights or small thermal diffusion coefficients). The magnitude of the
systematic error can be large enough to make the consideration of the
effect of the temperature gradient on o/T necessary (even for polystyrene
233k in THF a maximum error of 3% was found).

The temperature dependence of the solvent viscosity is of much more
importance than the temperature dependence of the thermal conductivity.
Neglecting the temperature dependence of the viscosity leads for polysty-
rene 233k in THF to a systematic error of about 8% in the determination
of o/T. If the temperature dependence of the solvent thermal conductivity
is neglected, this alone leads to a systematic error in o/T of about 2-3%
for the same system.

For the data sets studied, the effect of the temperature dependence of
the viscosity is counteracted by the effect of the temperature gradient on
the thermal conductivity and o/T. This means that when all three param-
eters are considered constant, the determination of «/T remains quite ac-
ceptable (a systematic error of about 4% was found for polystyrene 233k
in THF).

SYMBOLS

o Soret coefficient
c concentration (mol-L 1)
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concentration at the cold wall (mol-L™")

pressure drop across channel length (Pa)

temperature difference across channel thickness (K)

diffusion coefficient (m?-s 1)

thermal diffusion coefficient (m?-s~!-K~1)

solvent viscosity (Pa-s)

solvent thermal conductivity (J-m~!-s~ 1K™

solvent thermal conductivity at the cold wall J-m~!-s7''K™ 1)
dimensionless characteristic height of the solute layer
characteristic height of the solute layer (m)

channel length (m)

molecular weight (Da)

retention ratio

temperature (K)

temperature at the cold wall (K)

temperature at the characteristic height of the solute layer (K)
linear fluid velocity (m:s™')

mean linear fluid velocity (m-s™')

channel thickness (m)

coordinate in the direction of the channel thickness (m)
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